Describe the route taken by water from the soil up to the evaporating surface of a plant

Water is drawn into the root hair cells by osmosis; due to the presence of dissolved substances in the cell sap of root hairs, the concentration of cell sap is greater than that of the surrounding solution in the soil/concentration gradient; this exerts a higher osmotic pressure, thus drawing the water molecules across the cell wall and cell membrane into the root hair cells; more water drawn into the root hair cells dilutes the cell sap; making it less concentrated than that in the adjacent cortex cell of the root; due to osmotic gradient, water moves from the adjacent cells to the next by osmosis; until it enters the xylem vessels located in the center of the root; the xylem vessels of the root then conduct the water up into the xylem vessels in the stem into the leaves; there is a force in the roots which pushes water up the stem; this force is known as root pressure; and can be considerably high in some plants; energy from the endodermal cells of the root is responsible for driving this force; in the xylem vessels, water would rise up by capillarity; to some extent because the vessels are narrower and there is  a high attractive force between the water molecules and the cell walls; the cohesive; and adhesive forces are important in the maintenance of a continuous and uninterrupted water column in the xylem vessels up the tree to the leaves; water vaporizes from the spongy mesophyll cells; their cell sap becomes concentrated than the adjacent cells. This increases the osmotic pressure of the spongy mesophyll cells; as a result of this, water flows into the cell from other surrounding cell, which in turn takes in water from xylem vessels within the leaf veins; this creates a pull/suction force that pulls a stream of water from xylem vessels in the stem and roots. This force, known as transpiration pull; helps in maintaining a continuous column of water from the roots to the leaves; water flows from the midrib into leaf veins from where it enters leaf cells; from the mesophyll cells, it enters the airspaces; then the substomatal air chambers; from where it evaporates through the stomata; to the atmosphere; Max. 20 mks

Comments

Popular posts from this blog

Explain how structures of the human ear are adapted to their functions. (20 marks)

DESCRIBE THE ADAPTATIONS OF THE ILEUM TO ITS FUNCTION (20 MARKS)

(a) Define digestion. [2 m] (b) Describe the digestion of a piece of ugali in a human digestive system from the mouth until its assimilation. [18mks]